Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We presentCloudFlex, an open-source tool for predicting absorption-line signatures of cool gas in galaxy halos with small-scale structure. Motivated by analyses of ∼104K material in hydrodynamical simulations of turbulent, multiphase media, we model cool gas structures as complexes of cloudlets sampled from a power-law distribution of mass with velocities drawn from a turbulent velocity field. The user may specifyα, the lower limit of the cloudlet mass distribution ( ), and several other parameters that set the mass, size, and velocity distribution of the complex. This permits investigation of the relation between these parameters and absorption-line observables. As a proof-of-concept, we calculate the Mgiiλ2796 absorption induced by the cloudlets in background quasi-stellar object (QSO) spectra. We demonstrate that, at fixed metallicity, the covering fraction of sight lines with equivalent widthsW2796< 0.3 Å increases significantly with decreasing , cloudlet number density (ncl), and complex size. We then use this framework to predict the halo-scaleW2796distribution around ∼L*galaxies. We show that the observed incidences ofW2796> 0.3 Å sight lines with impact parameters 10 kpc <R⊥< 50 kpc in projected QSO–galaxy studies are consistent with our model over much of parameter space. However, they are underpredicted by models with andncl≥ 0.03 cm−3, in keeping with a picture in which the inner cool circumgalactic medium (CGM) is dominated by numerous low-mass cloudlets (mcl≲ 100M⊙) with a volume filling factor ≲1%. When used to model absorption-line data sets built from multi-sight line and/or spatially extended background probes,CloudFlexenables detailed constraints on the size and velocity distributions of structures comprising the photoionized CGM.more » « less
-
ABSTRACT Arkenstone is a new scheme that allows multiphase, stellar feedback-driven winds to be included in coarse resolution cosmological simulations. The evolution of galactic winds and their subsequent impact on the circumgalactic medium are altered by exchanges of mass, energy, momentum, and metals between their component phases. These exchanges are governed by complex, small-scale physical processes that cannot be resolved in cosmological simulations. In this second presentation paper, we describe Arkenstone’s novel cloud particle approach for modelling unresolvable cool clouds entrained in hot, fast winds. This general framework allows models of the cloud–wind interaction, derived from state-of-the-art high-resolution simulations, to be applied in a large-scale context. In this work, we adopt a cloud evolution model that captures simultaneous cloud mass loss to and gain from the ambient hot phase via turbulent mixing and radiative cooling, respectively. We demonstrate the scheme using non-cosmological idealized simulations of a galaxy with a realistic circumgalactic medium component, using the arepo code. We show that the ability of a high-specific energy wind component to perform preventative feedback may be limited by heavy loading of cool clouds coupled into it. We demonstrate that the diverging evolution of clouds of initially differing masses leads to a complex velocity field for the cool phase and a cloud mass function that varies both spatially and temporally in a non-trivial manner. These latter two phenomena can manifest in the simulation because of our choice of a Lagrangian discretization of the cloud population, in contrast to other proposed schemes.more » « less
-
Abstract The scaling of galaxy properties with halo mass suggests that feedback loops regulate star formation, but there is no consensus yet about how those feedback loops work. To help clarify discussions of galaxy-scale feedback, Paper I presented a very simple model for supernova feedback that it called the minimalist regulator model. This follow-up paper interprets that model and discusses its implications. The model itself is an accounting system that tracks all of the mass and energy associated with a halo’s circumgalactic baryons—the central galaxy’s atmosphere. Algebraic solutions for the equilibrium states of that model reveal that star formation in low-mass halos self-regulates primarily by expanding the atmospheres of those halos, ultimately resulting in stellar masses that are insensitive to the mass-loading properties of galactic winds. What matters most is the proportion of supernova energy that couples with circumgalactic gas. However, supernova feedback alone fails to expand galactic atmospheres in higher-mass halos. According to the minimalist regulator model, an atmospheric contraction crisis ensues, which may be what triggers strong black hole feedback. The model also predicts that circumgalactic medium properties emerging from cosmological simulations should depend largely on the specific energy of the outflows they produce, and we interpret the qualitative properties of several numerical simulations in light of that prediction.more » « less
-
Abstract This paper presents a new framework for understanding the relationship between a galaxy and its circumgalactic medium (CGM). It focuses on howimbalancesbetween heating and cooling cause either expansion or contraction of the CGM. It does this by trackingallof the mass and energy associated with a halo’s baryons, including their gravitational potential energy, even if feedback has pushed some of those baryons beyond the halo’s virial radius. We show how a star-forming galaxy’s equilibrium state can be algebraically derived within the context of this framework, and we analyze how the equilibrium star formation rate depends on supernova feedback. We consider the consequences of varying the mass loading parameter relating a galaxy’s gas mass outflow rate ( ) to its star formation rate ( ) and obtain results that challenge common assumptions. In particular, we find that equilibrium star formation rates in low-mass galaxies are generally insensitive to mass loading, and when mass loading does matter, increasing it actually results inmorestar formation because more supernova energy is needed to resist atmospheric contraction.more » « less
-
Abstract Metals in the diffuse, ionized gas at the boundary between the Milky Way’s interstellar medium (ISM) and circumgalactic medium, known as the disk–halo interface (DHI), are valuable tracers of the feedback processes that drive the Galactic fountain. However, metallicity measurements in this region are challenging due to obscuration by the Milky Way ISM and uncertain ionization corrections that affect the total hydrogen column density. In this work, we constrain ionization corrections to neutral hydrogen column densities using precisely measured electron column densities from the dispersion measures of pulsars that lie in the same globular clusters as UV-bright targets with high-resolution absorption spectroscopy. We address the blending of absorption lines with the ISM by jointly fitting Voigt profiles to all absorption components. We present our metallicity estimates for the DHI of the Milky Way based on detailed photoionization modeling of the absorption from ionized metal lines and ionization-corrected total hydrogen columns. Generally, the gas clouds show a large scatter in metallicity, ranging between 0.04 and 3.2Z⊙, implying that the DHI consists of a mixture of gaseous structures having multiple origins. We estimate the inflow and outflow timescales of the DHI ionized clouds to be 6–35 Myr. We report the detection of an infalling cloud with supersolar metallicity that suggests a Galactic fountain mechanism, whereas at least one low-metallicity outflowing cloud (Z< 0.1Z⊙) poses a challenge for Galactic fountain and feedback models.more » « less
-
Abstract Traditional star formation subgrid models implemented in cosmological galaxy formation simulations, such as that of V. Springel & L. Hernquist (hereafter SH03), employ adjustable parameters to satisfy constraints measured in the local Universe. In recent years, however, theory and spatially resolved simulations of the turbulent, multiphase, star-forming interstellar medium (ISM) have begun to produce new first-principles models, which when fully developed can replace traditional subgrid prescriptions. This approach has advantages of being physically motivated and predictive rather than empirically tuned, and allowing for varying environmental conditions rather than being tied to local-Universe conditions. As a prototype of this new approach, by combining calibrations from the TIGRESS numerical framework with the pressure-regulated feedback-modulated (PRFM) theory, simple formulae can be obtained for both the gas depletion time and an effective equation of state. Considering galaxies in TNG50, we compare the “native” simulation outputs with postprocessed predictions from PRFM. At TNG50 resolution, the total midplane pressure is nearly equal to the total ISM weight, indicating that galaxies in TNG50 are close to satisfying vertical equilibrium. The measured gas scale height is also close to theoretical equilibrium predictions. The slopes of the effective equations of states are similar, but with effective velocity dispersion normalization from SH03 slightly larger than that from current TIGRESS simulations. Because of this and the decrease in PRFM feedback yield at high pressure, the PRFM model predicts shorter gas depletion times than the SH03 model at high densities and redshift. Our results represent a first step toward implementing new, numerically calibrated subgrid algorithms in cosmological galaxy formation simulations.more » « less
-
Abstract Turbulent radiative mixing layers (TRMLs) form at the interface of cold, dense gas and hot, diffuse gas in motion with each other. TRMLs are ubiquitous in and around galaxies on a variety of scales, including galactic winds and the circumgalactic medium. They host the intermediate-temperature gases that are efficient in radiative cooling, thus playing a crucial role in controlling the cold gas supply, phase structure, and spectral features of galaxies. In this work, we develop an intuitive analytic 1.5-dimensional model for TRMLs that includes a simple parameterization of the effective turbulent conductivity and viscosity and a piecewise power-law cooling curve. Our analytic model reproduces the mass flux, total cooling, and phase structure of 3D simulations of TRMLs at a fraction of the computational cost. It also reveals essential insights into the physics of TRMLs, particularly the importance of the viscous dissipation of relative kinetic energy in balancing radiative cooling as the shear Mach number approaches unity. This dissipation takes place both in the intermediate-temperature phase, which reduces the enthalpy flux from the hot phase, and in the cold phase, which enhances radiative cooling. Additionally, our model provides a fast and easy way of computing the column density and surface brightness of TRMLs, which can be directly linked to observations.more » « less
-
ABSTRACT The nature of cosmic ray (CR) transport in the Milky Way remains elusive. The predictions of current microphysical CR transport models in magnetohydrodynamic (MHD) turbulence are drastically different from what is observed. These models usually focus on MHD turbulence with a strong guide field and ignore the impact of turbulent intermittency on particle propagation. This motivates our studying the alternative regime of large-amplitude turbulence with δB/B0 ≫ 1, in which intermittent small-scale magnetic field reversals are ubiquitous. We study particle transport in such turbulence by integrating trajectories in stationary snapshots. To quantify spatial diffusion, we use a set-up with continuous particle injection and escape, which we term the turbulent leaky box. We find that particle transport is very different from the strong guide-field case. Low-energy particles are better confined than high-energy particles, despite less efficient pitch-angle isotropization at small energies. In the limit of weak guide field, energy-dependent confinement is driven by the energy-dependent (in)ability to follow reversing magnetic field lines exactly and by the scattering in regions of ‘resonant curvature’, where the field line bends on a scale that is of the order of the local particle gyro-radius. We derive a heuristic model of particle transport in magnetic folds that approximately reproduces the energy dependence of transport found numerically. We speculate that CR propagation in the Galaxy is regulated by the intermittent field reversals highlighted here and discuss the implications of our findings for CR transport in the Milky Way.more » « less
-
ABSTRACT We present a method to characterize star-formation driven outflows from edge-on galaxies and apply this method to the metal-poor starburst galaxy, Mrk 1486. Our method uses the distribution of emission line flux (from H β and [O iii] 5007) to identify the location of the outflow and measure the extent above the disc, the opening angle, and the transverse kinematics. We show that this simple technique recovers a similar distribution of the outflow without requiring complex modelling of line-splitting or multi-Gaussian components, and is therefore applicable to lower spectral resolution data. In Mrk 1486 we observe an asymmetric outflow in both the location of the peak flux and total flux from each lobe. We estimate an opening angle of 17–37° depending on the method and assumptions adopted. Within the minor axis outflows, we estimate a total mass outflow rate of ∼2.5 M⊙ yr−1, which corresponds to a mass loading factor of η = 0.7. We observe a non-negligible amount of flux from ionized gas outflowing along the edge of the disc (perpendicular to the biconical components), with a mass outflow rate ∼0.9 M⊙ yr−1. Our results are intended to demonstrate a method that can be applied to high-throughput low spectral resolution observations, such as narrow-band filters or low spectral resolution integral field spectrographs that may be more able to recover the faint emission from outflows.more » « less
An official website of the United States government
